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This paper is concerned with the prediction of vibrations at high frequencies in built-up
structures. In the high-frequency range, the dynamical behaviour of structures is driven by
energy transfer rather than modal aspects. The description of systems in terms of energy is
thus well-suited and leads to closed-form equations of an integral type on energy variables.
The numerical solution of these equations is achieved with appropriate software called
CeReS, and the results are compared with experimental measurements on a multi-plate
structure.
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1. INTRODUCTION

The prediction of the dynamical behaviour of structures in the low-frequency range is
a problem that is largely overcome today. Although there remain some di$culties,
numerous "nite element software packages apply at least for the linear behaviour and are
used for the design of equipment. However, it is well known that "nite element analysis
becomes rapidly ine$cient as the frequency increases because of the unreasonable time
computation required.
In the transport industry, an essential question that is of an increasing interest is to

improve the vibroacoustic comfort. However, for the reason previously pointed out, the use
of classical methods turns out to be limited to frequencies at the low end of the audible
range. Methods with lower numerical cost are then required. Of course, such a numerical
gain is only possible in return for loss of information. Some simplifying assumptions are
required. In this context, statistical energy analysis (SEA) was developed several decades
ago [1]. Any complex structure is divided into simple connected subsystems. Based on
a power balance for each subsystem, Statistical Energy Analysis is concerned with the
prediction of vibrational energy levels.
SEA is based on the restrictive assumption that vibrational "elds are di!use. Thus,

a single degree of freedom is attached to subsystems, i.e., the total vibrational energy or,
alternatively, the modal energy. Alternative methods have been proposed to improve SEA
and particularly to predict the repartition of vibrational energy inside subsystems. Wave
intensity analysis [2] is relevant to this issue. Fields are no longer assumed to be di!use.
More precisely, homogeneity is still assumed but intensity may be non-isotropic. The
directional dependance of intensity leads to a greater number of degrees of freedom than
SEA but with a more accurate description of energy "elds in subsystems. Another approach
is found in the work of Nefske and Sung [3] where an analogy with the thermal conduction
in material is developed. Vibrational "elds may be neither homogeneous nor isotropic. This
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method is based on a local power balance and a local relationship relating energy #ow with
energy density analogous to Fourier's law in thermics. Nevertheless, the thermal
conduction analogy (also called energy "nite element method [4}6] or vibrational
conductivity approach [7]) is subject to some limitations that have been emphasized in the
literature [7}11]. One of these limitations is that the direct "eld predicted by this approach
is in the form 1/�r where r is the source}receiver distance whereas the correct law is 1/r for
bidimensional systems like plates. In order to avoid this di$culty, this paper proposes
a method based rather on an analogy with the radiative thermal transfer. This method
signi"cantly di!ers from the thermal conduction analogy. Some details are given in this text
but for a complete comparison of both methods for circular plates, see reference [9].
The "rst part of this text is intended to cover the theoretical aspects of the method.

Secondly, the underlying equations are solved numerically with the help of software,
(CeReS) that has been speci"cally designed for applications in vibroacoustics. Finally, two
experiments on a built-up structure made of assembled plates were carried out and the
results have been compared with the results of the numerical models provided by the
software CeReS.

2. GENERAL CONCEPTS

The analysis of vibrating "elds in the high-frequency range requires several concepts to be
considered which are discussed in this section.

2.1. TRAVELLING WAVE

The most fundamental of these concepts is that any vibrating "eld may be viewed as
a linear superposition of some travelling waves. The reasons for this choice instead of
a modal decomposition will be highlighted throughout this text. But it can be stated here
that standing waves can only exist at some particular frequencies (the eigenfrequencies) and
are responsible for sudden variation of dynamical responses. This modal behaviour is
dominant in the low-frequency range and the decomposition of the vibrating "eld into
stationary waves is well-suited. In contrast, the higher the frequency, the larger is the modal
overlap and the less visible are the modes. The relevant phenomenon in the high-frequency
range is the energy transfer between any parts of the structure. In this matter, the underlying
entity which explains these energy exchanges in a convenient way is the travelling wave
rather than the stationary wave. This is why travelling waves are so important in the
high-frequency range.
The high-frequency domain has not yet been de"ned. Several de"nitions appear in the

related literature [12, 13]. The main di$culty is that in the structural case, wavenumbers
and also wavelengths depend on the material properties. In the work of Wohlever and
Bernhard [4], it has been noted that results of energy models should be meant as a spatial
average over a wavelength of &&exact'' results of the equations of motion. Additional
averaging processes should be introduced for an accurate interpretation of the macroscopic
behaviour predicted by energy models [1, 14]. However, in this study, the point of view of
Wohlever and Bernhard is adopted; this is also the one used by DeLanghe [14] and the high
frequencies are de"ned as the domain where at least several wavelengths lie in the system or,
in other words, the characteristic length of the structure is much greater than the
wavelength.When several subsystems are connected, the validity domain must be restricted.
All subsystems must be separate in the high-frequency band and thus high frequencies for
the whole structure begin when several wavelengths lie in each subsystem.
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The "rst step in developing the model is to make an exhaustive list of all types of waves
which can propagate inside the studied structure. The "nal experiment is carried out on
a multi-plate structure and thus the present discussion is con"ned to the case of vibrating
plates. As we are concerned with some wavelengths which are much greater than the
thickness of plates, the conventional theory of Love plates remains valid. It is well-known
that three kinds of travelling waves may exist in an in"nite extended Love plate. The "rst
type is the bending wave responsible for out-of-plane motion. All quantities attached to this
wave will be denoted by the subscript b. The second and third types of waves are the
longitudinal and transverse waves for in-plane motion denoted by the subscripts l and t.
The corresponding group velocities are denoted by c� where �"b, l or t.
The fact that in the absence of curvature, all waves propagate independently of each other

leads to a major simpli"cation in describing a vibrating "eld with a wave approach. No
energy exchange takes place inside plates during propagation. The only way for a wave to
exchange some energy with other types of waves is by re#ection at a boundary. Of course,
this phenomenon, usually called the conversion mode, must be taken into account in the
model.
Special attention should be paid to the status of evanescent waves. These waves may exist

in particular systems such as transverse vibrating beams and out-of-plane motion of plates.
The question arising now is to decide whether the evanescent waves must be taken into
account with the view of evaluating energy transfer in structures. Before giving an answer,
some remarks on the basis of the example of #exural waves in beams must be made. An
evanescent wave in beams gives rise to a transverse motion v (x, t)"ae����k

�� where k
�
is the

#exural wavenumber and � is the circular frequency. The resulting time-averaged energy
density is =(x)"���v/�t��/4#D���v/�x���/4"���e��k��/2 where � is the mass per unit
length and D is the real-valued #exural rigidity of the beam. Thus, the energy density
decreases rapidly far from the origin. More exactly, the energy of an evanescent wave is
negligible outside the vicinity of the irregularity from which it emerges. On the other hand,
the time-averaged energy #ow which is I(x)"DR(��v/�x����v*/�x�t!��v/�x��
�v*/�t)/2"0 vanishes. Indeed, an evanescent wave is rarely alone and some cross-product
terms appear in the evaluation of energy quantities when both the travelling and evanescent
waves exist. However, in the far "eld evanescent waves are negligible and thus the
evanescent wave does not contribute to any energy transfer over a large distance. However,
the presence of evanescent waves can drastically modify the behaviour of the structure in the
vicinity of irregularities such as boundaries, interfaces or driving points. It could even be
that it dominates all other types of travelling waves. Consequently, one cannot be unaware
of the presence of these waves.When a travelling wave of kind � impinges on an irregularity,
all other types of waves, including evanescent ones, are re#ected. It is then clear that the
presence of evanescent waves acts signi"cantly upon the mode conversion phenomenon.
Thus, in the following, the energy attached to evanescent waves will be systematically
neglected when evaluating the vibrating energy inside the structure and the energy #ow of
these waves will not a!ect the energy balance at any point. But these waves must be
accounted for when evaluating the local energy e$ciencies that drive the energy exchange
between travelling waves at connections of the plates.

2.2. WAVE-PACKET

Every time there is interest in transient aspects of the dynamical behaviour of systems, the
travelling wave description will turn out to be inappropriate. It appears that for the purpose
of accounting for time-dependance while remaining in the high-frequency domain, the most
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natural generalization of travelling waves is the wave-packet concept. Wave-packet may be
thought of as a travelling wave of "nite duration, or, in other words, a travelling wave
amplitude-modulated by a pulse-shaped waveform, which initially restricts the wave-packet
to a "nite spatial spread. The duration of the disturbance must be large compared with the
period of the main oscillation such that the wave-packet comprises of several cycles. The
high-frequency assumption then just states that the frequency � of oscillation within the
packet lies in the high-frequency domain, that is, the wavelength is smaller than
a characteristic length of the system. In order that wave-packets behave like travelling
waves during their passing, it must also be assumed that the shape function varies slowly
compared with the main oscillation. At the initial instant, the Fourier transform of
a wave-packet is a narrowband signal sharply peaked at � with a bandwidth �� that is
small relative to �. Note that for a pure travelling wave, the spectrum is a delta Dirac
function at � while a pulse has a constant spectrum over the frequency domain or at least
a wideband spectrum for actual pulses.
In Appendix A, the case of Gaussian wave-packets is studied. It has been shown that for

both dispersive and non-dispersive media, initial Gaussian wave-packets remain Gaussian
wave-packets during propagation. In addition to the fact that complete calculations can be
carried out, this result justi"es the choice of the Gaussian shape for the study of
a wave-packet example. It has also been shown that the frequency of the main oscillation
remains unchanged during the propagation. This key result points out that if the
high-frequency assumption applies at initial time, it also applies at a later time. Concerning
the shape function, a non-dispersive medium leads to a constant spatial spread whereas
a dispersive medium tends to increase the spatial spread as time goes on. Thus, the
assumption that time-variation induced by the shape function is slower than those due to
the main oscillation is veri"ed.
Finally, it is well known that wave-packets propagate with the group velocity c. Since the

energy attached to the motion and the deformation of the medium vanishes outside the
wave-packet, the group velocity is also the energy velocity.

2.3. SOME APPROXIMATIONS AND ASSUMPTIONS FOR HIGH FREQUENCIES

With these aspects in mind, the description of the dynamical behaviour of both travelling
waves and wave-packets is now considered. All the material necessary in the following may
be summarized in three assumptions which will be applied throughout this text and which
are now set out. These assumptions are rather common in the high-frequency literature and
no attempt to justify them is made from the study of exact solutions of the governing
equation, wave equation or Love plate equation, for instance. Note that these assumptions,
except the "rst one, only apply at high frequencies. They rather result from some
approximations that will be speci"ed.
The "rst assumption stems from the well-known Helmholtz}Kirchho! formula in

acoustics or other related formulae for more complicated waves, among them waves in
plates or for more general situations that include time-dependance. The underlying idea of
all these integral representation formulae is that at any point the vibrating ,eld is the linear
superposition of, on the one hand, the direct ,eld emerging from actual sources and, on the
other hand, the di+racted ,eld or scattered ,eld emerging from secondary sources located on
boundary. It is not necessary to give all the details about these formulae and in particular,
the exact magnitude of secondary sources is of no importance for the purposes which follow.
The only relevant fact is that any vibrating "eld may be synthesized by summing travelling
waves or wave-packets whose sources are clearly identi"ed driving points, boundaries,
interfaces and, more generally, any point where interaction of waves occurs.
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The second postulate states that all travelling waves and wave-packets are uncorrelated;
that is the relative phase between an arbitrary pair of waves is a uniform random variable.
In view of the "rst assumption, there should be a di!erentiation between uncorrelation of
actual sources and secondary sources. The "rst type is a physical assumption in the sense
that it must be veri"ed in the actual experiment that driving forces or moments are
e!ectively uncorrelated. On the other hand, uncorrelation of di!raction sources or rather
mixed sources results from an approximation deliberately introduced in the description of
deterministic systems. This approximation leads to neglect all interference e!ects in
structures. This is a very important point for a complete understanding of the method.
Modes cannot be predicted. The results of the method considered in this paper are
interpreted as averaged results in a local sense (spatial average over a wavelength,
third-octave band frequency average). Then spatial correlations within a wavelength are
cancelled but long-range correlation remains. This shortcomingmay appear in the presence
of some particular e!ects such as waveguide cut-o!, block-band and pass-band of periodic
systems. These kinds of systems that require a speci"c treatment, are not considered in this
paper.
Finally, the third and last assumption is the locality principle which may be expressed in

these words. Any interaction process involving several waves interacting at a given point
depends only on the local geometry of the system and wavefronts. In other words, local
behaviour depends on local properties. The most fundamental interest of the locality
principle lies in the fact that it allows the substitution of any problem of interacting waves
by a canonical problem with identical local geometry but extrapolated in such a manner
that a closed-form solution is accessible. The simplest example for the use of the locality
principle is the re#ection problem. The re#ection coe$cient of a plane wave impinging on
an in"nite plane may be used for any wave impinging on a regular boundary. Indeed, this is
simply an approximation valid at "rst order since the e!ects of curvature of both wavefront
and boundary are not taken into account. However, the locality principle states that the
presence of a remote obstacle is of no importance.

2.4. ENERGY VARIABLES

It has been pointed out that high-frequency dynamics are governed by energy transfer
rather than modal behaviour. To this end, the choice of energy variables in place of
kinematic variables such as pressure and velocity in acoustics and stress and displacement
for structures, seems to be natural. In fact, it has been discussed in the literature that the
choice of energy variables may o!er some signi"cant advantages for high-frequency
modelling [1].
Thus, in this text, vibratory "elds are fully described with the help of two energy variables,

namely the energy density=� (M, t), a scalar quantity and the energy #ow I� (M, t), a vector
quantity. Both depend on positionM and time t. By virtue of the uncorrelation assumption,
all energy quantities are additive; that is, a linear superposition principle is valid for energy
variables. This key result allows energy quantities to be handled in a very simple manner. In
particular, energy variables have to be the sums of related energies attached to individual
waves.
At any point M and any time t, energy balance equation is

div ' I�#p����� #

�=�
�t

"�� , �"b, l or t, (1)
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where p����� is the power density being dissipated, �� is the power density being injected by
driving forces and �=�/�t is the time-varying term of energy density. Of course, power
density being injected is assumed to be known, or at least may be derived from imposed
force or displacement with the use of asymptotic relationships commonly reported in the
high-frequency literature [15, 16].
The plan is now to solve equation (1) for pure waves by evaluating all terms on the

left-hand side and to deduce total energies=� and I� by applying the linear superposition
principle.

3. RADIATIVE ENERGY TRANSFER

3.1. ENERGY FIELDS FOR PURE WAVES

In Appendix A of reference [17], it is shown that cylindrical bending waves in plates
verify two additional properties. First, the energy density is equally shared between kinetic
energy ¹� and potential energy or deformation energy <� .

¹� (M, t)"<� (M, t). (2)

Second, the energy #ow magnitude is the energy density times group velocity.

I� (M, t)"c�=� (M, t). (3)

A similar veri"cation for in-plane cylindrical waves would give the same result. It should be
noted that two assumptions have been necessary to achieve this calculation, the far "eld
hypothesis and neglect of the evanescent wave. The latter has previously been justi"ed.
Since the near "eld extends over few wavelengths, the far"eld hypothesis is well suited in
high frequencies where the wavelength is small. In Appendix A, the case of Gaussian
wave-packets is considered. It results in the same conclusions.
In general systems, the energy of waves should decay during propagation due to the

action of damping phenomena. In the present text, all processes of conversion of the
vibrational energy into a form of energy which is not taken into account will be called
damping, including heat, sound and so on. The nature of the physical processes responsible
for dissipation, in the sense of the above de"nition, may be of various kinds. Viscous forces
applied to a structure by a surrounding #uid, internal friction forces usually taken into
account in Hooke's law by substituting a complex elastic modulus, friction at interfaces of
metal sheets of built-up structures, and acoustic radiation are some examples of such
processes. However, among this wide variety of aspects, two classes may be de"ned;
damping phenomena occurring within the components of the system which are included in
the term p����� and other phenomena for which the dissipation is con"ned to the
neighbourhood of interfaces or boundaries and which will be taken into account later when
considering the problem of re#ection at boundaries. Among the former, viscous forces result
in a power density being dissipated which is proportional to local kinetic energy. On the
other hand, a complex elastic modulus leads to an energy loss proportional to potential
energy. It has previously been noted that kinetic and potential components of energy are
equal for a pure wave, so that both damping laws match. In general, equality of both forms
of energy remains valid for a superposition of waves by virtue of the linear superposition
principle. With these considerations in mind, a universal damping law for internal losses is
adopted. A wave of energy #ow of magnitude I� , after traversing a thickness ds in its
direction of propagation, will be weakened in such a way that dI�"��=�ds where � is the
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circular frequency of the wave and � an appropriate damping loss factor. Sometimes it will
be more convenient to use an acoustical notation by introducing an absorption factor
m de"ned by dI�"mc�=�ds. The power density being dissipated is then related to the
energy density by

p����� (M, t)"��=� (M, t)"mc�=� (M, t). (4)

Now return to the "rst aim which was to calculate energy "elds for pure waves. The
present method requires the knowledge of the direct "eld: that is the energy density created
by a point source in an in"nitely extended medium. This energy density is denoted by
G� (S, �;M, t) where S is the source point sending a signal at time � andM is the observation
point at time t. The related energy #ow is denoted by H� (S, �;M, t). Sometimes, the notation
H� will be used for the magnitude of the energy #ow vector. The power balance to be
veri"ed is

div
�
'H� (S, �;M, t)#mc�G� (S, �; M, t)#

�G�
�t

(S,�;M, t)"�
�
(M) �� (t) (5)

for an impulse excitation. Note that G� and H� must be related by relationship (3). In
Appendix B, the outgoing solution of equations (3) and (5) is found to be

G� (S, �;M, t)"G� (S,M)� (t!�!SM/c�), (6)

H� (S, �;M, t)"H� (S,M)� (t!�!SM/c� ), (7)

where the steady state solutions G� (S;M ) and H� (S;M) have been introduced (see also
Appendix B of reference [17])

G� (S,M)"
e�	��

	
�
c�SM
��

, H� (S,M )"c�G� (S,M)uSM , (8, 9)

where 	
�
is the solid angle of space of dimension n"1, 2 or 3 and uSM is the unit vector from

S towardM. Note that these expessions have been derived under the assumption thatm and
c� are constant or, in other words, that the space of propagation is homogeneous and isotropic.

3.2. COMPLETE ENERGY FIELDS

By virtue of linearity and the decomposition into direct and di!racted "elds, the case of
complete wave "elds is handled by adding the direct "elds emerging from primary sources
�� (S, �) and from secondary sources denoted by 
� (P, u, �) where P belongs to the boundary
��, u a direction and � the time. It results in

=� (M, t)"�
�

��
��

�� (S, �)G� (S, �;M, t) dS d�

#�
�

��
���


� (P, uPM , �) G� (P, �;M, t) dPd�, (10)

=� (M, t)"��

�� (S, t!SM/c�)G� (S,M) dS#���


� (P, uPM, t!PM/c�)G� (P;M) dP.

(11)
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A similar relationship is obtained for energy #ow:

I� (M, t)"��

�� (S, t!SM/c�)H� (S,M) dS#���


� (P, uPM, t!PM/c� )H� (P,M) dP. (12)

Of course, the primary sources �� are assumed to be known but the secondary sources

� remain unknown and an additional equation has to be sought to determine them.

3.3. RADIATIVE INTENSITY

In order to describe the directional dependance of the energy #ow, it will be convenient to
introduce the radiative intensity de"ned as the energy #ow per unit solid angle and unit area
normal to the rays. It will be denoted by I� (M, u, t ) which depends on the direction u. At any
point M and any time t, the energy #ow I� (M, t ) is obtained by summing the radiative
intensity over all solid angles. Thus,

I� (M, t)"�I� (M, u, t) udu. (13)

Radiative intensity on the boundary �� may be related to the secondary source
magnitude 
� . In this matter, consider an in"nitesimal surface dP of the boundary. The
radiative intensity in the direction u is given by

I� (P,u, t)"
dP�

dPndu
, (14)

where dP


"dP cos �

�
is the normal surface and dP� the power in the solid angle du

(see Figure 1). The energy #ow emanates from a secondary source whose magnitude is 
�dP;
then

I� (P, u, t)"lim
�P0


� (P, u, t!�/c�) dP
H� (P,M�) �n!1du

dPndu
"


� (P, u, t)

	
�
cos �

�

, (15)

where M� is a point at a small distance � from P in the direction u. Thus, this relationship
implies that the use of the radiative intensity I� (P, u, t) (that is, the energy -ow per unit solid
angle and area normal to the rays) or the use of the directional emitted #ux 
� (P, u, t)/	0 (that
Figure 1. Radiative intensity emanating from an in"nitesimal surface dP into solid angle du about u.



Figure 2. Radiative intensity at any pointM inside the domain �. Both actual sources S located inside the cone
(M, dv) and the boundary source dQ contribute.
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is the energy -ow per solid angle and area) as an unknown for the re#ection problem, is
a purely formal question. The source dP is said to be di!use when the radiative intensity is
constant or, in other words, when the directional emitted #ux varies with the cosine of the
polar angle.
The radiative intensity is not only de"ned in the vicinity of the boundary but also inside

the domain itself. Consider a point M inside � and a direction v. The radiative intensity
I� (M, v, t) attached to a wave  originates from the source 
� located at Q on the boundary
in view of M and secondly from all actual sources �� belonging between Q and M.
Explicitly,

I� (M, v, t) v dv"�
�����	

�� (S, t!SM/c�)H (S,M) dS#
� (Q, v, t!QM/c)H (Q,M) dQ ,

(16)

where the "rst term on the right-hand side is an integral over the cone (M, dv) of vertex
M and angle dv about v. The second term is the contribution of the sources that belong to
dQ (see Figure 2). Of course, by virtue of equation (13), expression (12) is recovered by
integrating equation (16) over all solid angles.
On the other hand, the incident #ux at any point P of the boundary stemming from v is

readily found by applying equation (16).

I� (P, v, t) v ) n
�
dv"� �

��� ��	

�� (S, t!SP/c�)H� (S,P) v dS

#
� (Q, v, t!QP/c )H� (Q,P) v dQ� ) n
�
. (17)

Notations are de"ned in Figure 3.

3.4. REFLECTION AT BOUNDARIES

The required equation for 
� is found by applying the power balance at any point P on
the boundary ��. To this end, the bidirectional re#ectivity of the boundary is introduced.



Figure 3. Incident #ux at a point P of the boundary stemming from the solid angle dv about v.

Figure 4. The bidirectional re#ectivity depends on an incident direction u and a re#ected direction v.
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The bidirectional re#ectivity R�� (v, u) at any point P is de"ned as the part of the radiative
intensity in the direction u attached to the wave �, induced by a unit incident #ux of the
wave  stemming from the direction v (see Figure 4). The bidirectional re#ectivity depends
on two directions. The total radiative intensity I� (P, u, t) is obtained by summing all the
contributions of directions v and types  of wave. So,

I� (P, u, t)"�
� �

R�� (v, u) I� (P, v, t) v ) n
�
dv, (18)

where I� (P, v, t) v ) n
�
is the incident #ux per unit solid angle of a wave  from the incident

direction v. The integration runs over all incident solid angles. The purpose now is to
explain the di!erent terms occurring in this relationship.
The radiative intensity of the surface dP in the direction u is given by equation (15). On

the other hand, the incident #ux at P stemming from v is given by equation (17). The
re#ection condition (18) then is


� (P, u, t)
	
�
cos �

�

"�
� � ��

R�� (uSP , u)� (S, t!SP/c�)H (S,P) dS

#���

R�� (uQP , u)
 (Q,uQP, t!QP/c)H� (Q,P) dQ� ) n
�
. (19)

This integral equation fully determines the unknowns 
� .



TABLE 1

Solid angle 	
�
of space and value of the constant 	 versus the

space dimension n

n"1 n"2 n"3

	
�

2 2� 4�
	 1 2 �
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The directional hemispherical re-ectivity R�� (v) of a surface dP is de"ned as the total
re#ected energy #ux leaving dP in all directions due to the directional incident #ux
I (P, v) cos �

�
.

R�� (v)"�R�� (v, u) cos ��
du, (20)

where the integral runs over all re#ected directions. The directional re#ectivity is sometimes
called re-ection e.ciency. This is the ratio of the re#ected power of the wave � over the
incident power of the wave  and, thus, its value runs from 0 to 1.
Now consider the case of perfectly di!use re#ection. A perfect di!use re#ector (also called

Lambert's re#ector) has a bidirectional re#ectivity which is u-independent. For such
re#ectors, the directional re#ectivity is

R�� (v)"R� (v, u0) � cos �
�
du"	R�� (v, u0) , (21)

where u0 is any "xed re#ected direction. The values of the constant 	 for di!erent dimensions
are summarized in Table 1.
In the perfectly di!use case, the right-hand side of re#ection law (18) does not depend on

the direction u and so the radiative intensity from a di!use re#ector is constant over all
directions u. Relationship (15) then leads to a directional emitted #ux 
� (P, u, t)/	� which
varies with the cosine of the polar angle �

�
. Then,


� (P, u, t)"
� (P, t) cos ��
. (22)

This is Lambert's law.
By substituting equations (21) and (22) into integral equation (19), a new integral equation

on 
� (P, t ) for the particular case of di!use re#ection is obtained.

	
	
�


� (P, t)"�
� � ��

R�� (uSP)� (S, t!SP/c�)H (S,P) dS

#���

R�� (uQP) 
 (Q, t!QP/c) cos �QH (Q,P) dQ� ) n
�
. (23)

In acoustics, only one type of wave may propagate in the #uid. Re#ection from materials
is characterized rather in terms of the absorptivity �, or absorption factor which is related to
the re#ectivity with �"1!R. Its value is usually evaluated by introducing a piece of
material into a reverberent room and by measuring the resulting reverberation time. Since
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a di!use "eld remains in the room, the absorption factor then determined is an averaged
value over all incident directions of the directional absorptivity. It should be noted that the
directional absorptivity can be measured for any incident direction with a Kunt's tube.
Unfortunately, these values are rarely available in the literature for usual materials. In any
case, it is a common assumption in room acoustics that the absorption factor does not
depend on the incident direction v. Integral equation (23) then reduces to


 (P, t)
4

"(1!�) ���

� (S, t!SP/c)H (S,P) dS#���


 (Q, t!QP/c) cos �

H (Q,P) dQ� ) n

�
.

(24)

Note that 	
�
/	"4 for three-dimensional space. This integral equation has been studied in

reference [18].

3.5. TRANSMISSION AT INTERFACES

The analysis of re#ection and transmission at the interface between two media or more, is
relatively straightforward, following a similar form to that in the previous section. All
quantities are labelled with a subscript i referring to the medium that is considered. For
instance, at any point P belonging on the interface, 


��� denotes the directional emitted #ux
towards the medium i.
Now re#ection condition (18) is replaced by some transmission conditions. It is tacitly

assumed that re#ection is the particular case of transmission from a system to itself. Thus,
the transmission conditions read

I
��� (P, u, t)"�

��� �
Rji�� (v, u) I��� (P, v, t) v ) n

�
dv. (25)

There are as many equations as types of wave � and systems i connected at P. Further, the
di!erent terms are expanded in the same way as for the re#ection condition in the previous
section. This yields



��� (P, u, t)
	
�
cos �

�

"�
��� ���

�

R
����� (uSP, u)�j�

(S, t!SP/c�)Hj�
(S,P ) dS

#���
�

R
����� (uQP, u)
j�

(Q, uQP, t!QP/c)H��� (Q,P) dQ� ) n
�
. (26)

This set of integral equations fully determines the unknowns 

��� .

The case of di!use transmission is reached by substituting Lambert's law (22) into the set
of integral equations. We readily obtain:

	
	
�



��� (P, t)"�

��� ���
�

R
����� (uSP)�j�

(S, t!SP/c� )Hj�
(S,P) dS

#���
�

R
����� (uQP) 
j�

(Q, uQP, t!QP/c )Hj�
(Q,P )dQ� ) n

�
. (27)



Figure 5. Non-convex domain. The point P is illuminated by sources Q and S, respectively, located on the
boundary �� and in the domain � except the shadow zone.
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This is the set of integral equations corresponding to di!use transmission. This set has been
derived in reference [17] for two plates in a steady state condition for a single type of wave.

3.6. NON-CONVEX DOMAIN

Until now, it has been tacitly assumed that the domain of energy propagation is convex.
However, such an assumption is no longer necessary.
Consider now that the energy emanating from an actual source S or a boundary source

Q cannot reach a pointM if an obstacle is encountered in its path. In such a case, the energy
is re#ected and/or absorbed by the obstacle. This secondary emission of energy is accounted
for by putting a boundary source on the obstacle.
Thus, relationships (11) and (12) must be modi"ed in such a way that only the sources

S and Q visible by the point M have to be accounted for (see Figure 5). In the same way,
when integrating equation (18) over all solid angles dv, only the sources visible by P can
contribute to the incident #ux at P. Relationships (19, 23, 26, 27) are then modi"ed.
A simple way to discard these hidden sources is to substitute expressions (8, 9) of direct
"elds for the following new values:

G� (S,M)"
e�	��

	
�
c�SM
��

< (S,M) , H� (S,M)"c�G� (S;M) uSM , (28, 29)

where< (S,M) is the visibility function whose value is one when S is visible fromM and zero
otherwise.

4. ONE-DIMENSIONAL SYSTEMS

The particular case of one-dimensional systems is discussed in this section. For the sake
of simplicity, it is further assumed that only a single wave can propagate in the system. For
such a simple system, the boundary is composed of two extremities. Let the space variable
along the system be denoted by s, and the origin be chosen in such a manner that the
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extremities are located at s"0 and l. Now, if the power supplied to the system is coming
from these extremities (that is, no driving point is located inside the system), relationship
(11) for the energy density= reduces to

= (s, t)"
1

2

� (t!s/c) e�	�#

1

2

� (t!(l!s)/c) e�	����	, (30)

where 
�/2 and 
�/2 are the power emitted, respectively, by the left and the right
extremities. Deriving expression (30) with respect to time and space variables gives

2="
�e�	�#
�e�	����	, 2�
�
="
��e�	�#
��e�	����	, (31, 32)

2��
�
="
���e�	�#
���e�	����	, (33)

2��
�
="�


���
c�

#

2m

c

��#m�
�) e�	�#�


���
c�

#

2m

c

��#m�
�� e�	����	. (34)

By combining these equalities, it is straightforward to check that the energy density
= veri"es the partial di!erential equation:

��=

�s�
(s, t)!

1

c�
��=

�t�
(s, t)!

2m

c

�=
�t

(s, t)!m�= (s, t)"0 (35)

which is exactly the equation derived in reference [11] from another point of view. In this
reference, this equation is discussed and compared with another equation which has been
proposed for the energy density [3]. The latter equation is based on the assumption that the
energy #ows like the thermal #ows in material. This leads to an analogy with a heat
conduction problem. However, the telegraph-type equation (35) rather suggests that a more
correct analogy should be with a radiative heat transfer problem. This is the purpose of the
next section.

5. ANALOGY WITH RADIATIVE HEAT TRANSFER

A glance at any radiative heat transfer treatise reveals that the vibrational energy as
considered in this paper travels in the same way as radiative heat. The similarities and
dissimilarities of both problems will be discussed here.
At "rst, it was considered that vibrating energy decreases during its travel. Such

a phenomenon does not exist for the propagation of heat in vacuum or in air but appears
when considering a semitransparent medium. This is Beer's law. Generally, this heat
absorption immediately decays with an emission of the same amount of energy. In this
study, the vibrational energy being dissipated is considered as lost or, more exactly, is
transformed into internal energy that cannot reappear in a vibratory form.
It was seen that in plates, three types of waves can travel. On the other hand, heat

propagates with a unique speed that is the velocity of electromagnetic waves in the
particular medium. In the structural case, this di!erence leads to models more elaborated.
Obviously, in the acoustical case, this di!erence vanishes.
Re#ection of energy at boundaries highlights a more fundamental di!erence. When

considering absorbing walls (that is for a re#ection e$ciency less than one) the dissipated
energy is lost for the vibrating system. However, in thermics, this energy raises the wall
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temperature. Following Stefan's law, this wall radiates some energy. The emissivity of a wall
is equal to the absorptivity; this is the Kirchho!'s law. No energy is lost. In fact, in thermics,
one is interested in the temperature of bodies submitted to the radiation. These bodies may
be considered as being located on the boundary of the domain of thermal propagation. On
the other hand, in mechanics, one usually seeks to estimate the vibrational energy inside the
structures. It is for this reason that this paper started by deriving relationships (11, 12) for
the energy quantities inside the domain. This is a real di!erence of scienti"c strategy.
Despite this di!erence, it is possibe to apply thermal software dealing with radiative

transfer to mechanical or acoustical problems. It seems that this possibility has never been
emphasized in the literature. Numerous relationships for factors available in thermal books
are certainly re-usable in mechanics. For practical reasons, the design of speci"c software
for acoustics and mechanics was preferred, which will be described in the next section.

6. DESCRIPTION OF THE SOFTWARE CERES

The software CeReS has been designed to solve equations (23, 27) for a limited number of
cases. In reference [18], results for acoustical enclosures have been compared with results of
ray-tracing software for steady state conditions. It results in a good agreement. In this text,
structures made of assembled plates is of interest.
Each plate is de"ned as a part of plane surrounded by a polygonal line. The plates are

either convex or not. These plates are joined by their edges. The joints may be composed of
an arbitrary number of plates. The geometry of the plates as well as the constitution of the
joints must be speci"ed to the software in a special data "le. The structure then obtained
may be subjected to point loadings. These sources are described in terms of their positions
S
�
, s"1, 22 and the powers ��� being injected into any kind � of waves. The response may

be computed at any point M of any plate.
The damping occurs in two ways. On the one hand, a damping loss factor � is attached to

each plate. It is responsible for the decrease of energy during propagation. On the other
hand, an absorption factor � is attached to each edge of each plate. It is responsible for the
absorption of the energy when waves impinge on the boundary. In CeReS, the re#ection
e$ciencies R�� are evaluated on the basis of the equilibrium of forces and moments at the
interface as well as the continuity of displacements. For a free edge, clamped edge and
a simply supported edge, the calculation of these e$ciencies is carried out in Appendix
C and for a general joint composed of an arbitrary number of plates, see reference [19].
These considerations lead to non-dissipative re#ection e$ciencies; that is, the sum equals
unity. To take into account extra damping which may occur at edges or interfaces, the user
can specify the absorption factor � for each edge. Re#ection e$ciencies predicted
theoretically are then multiplied by this factor �.
CeReS solves equations (23, 27) for steady state conditions. In this case, a boundary

element method is applied. Each edge of the plates is divided into a limited number of
elements ¸

�
, k"1, 22 of equal size. The magnitudes 
� of the boundary sources are

assumed to be constant over each boundary element. Thus, three unknowns 
��, �"b, l or
t are attached to the boundary element numbered k. For each element k, equation (23) or
(27), depending on the position of the element at edge or interface, is applied at the middle
P
�
of the element. This pointP

�
is called the collocation point. First, for an element k located

at edge


��"���
���

���R��H� (S�
,P

�
) cos �

��
#�

�� �

�� �

¸
�

R��H� (Q,P�
) cos �


cos �

��
dQ� , (36)
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where �
��
is the incidence angle at the collocation point P

�
, �


the emanating direction, and

R��� is evaluated for the incidence angle. Second, for an element located at interface,


�
���"�� �

�����
��
���R�����H��� (S�

,P
�
) cos �

��
#�

j,, l


���
¸
�

R
�����H��� (Q,P�

) cos �

cos �

��
dQ� ,

(37)

where the sum runs over all connected plates, wave types and sources.
Thus, the set of equations (36, 37) leads to a system of linear equations for the unknowns


�� . The coe$cients involve some integrals evaluated by Gauss quadrature. It should be
pointed out that these integrals are regular, unlike the singular integrals involved in the
classical boundary element method, allowing a fast and accurate computation. This linear
system is solved with a Lapack [20] routine. Once the source magnitudes 
�� are computed,
the energy density or energy #ow inside each plate is evaluated from the equations (38, 39).

=� (M)"�
�

���G� (S�
,M)#�

�


�� �
¸

�

G� (P,M) cos �
�
dP (38)

for energy density at M and

I� (M)"�
�

���H� (Ss,M)#�
�


�� �
¸
�

H� (P,M ) cos �
�
dP (39)

for energy #ow. In these expressions, the sums on the right-hand side run over all sources
acting on the plate where M lies.

7. SEA FOR ASSEMBLED PLATES

Statistical energy analysis is well suited for built-up structures in the high-frequency
range. Many variants may be found in the literature. The structure is "rst subdivided into
several subsystems. Assembled plates are of concern here and the most natural choice for
these subsystems is that each plate and each wave type is one subsystem. For the sake of
simplicity, the double subscript k"i, � for the plate i and wave � are introduced. Denote the
total vibrational energy contained within the subsystem k"i, � by=M

�
A

�
with A

�
being the

area of plate i and =M
�
the mean vibrational energy per unit surface. The power being

injected into the plate i is P�
�
�

"�
�
�� (S�

) where the sum runs over all source points S
�
of the

plate i. The usual asymptotic value is adopted for an estimation of the modal density
n
�
"A

�
�/2�c�

�
c
�
where c

(�
is the phase velocity for subsystem k. The modal overlap is then

m
�
"��n

�
. In the framework of SEA, it is also necessary to introduce the coupling loss

factors �
��
. The power being exchanged between subsystems k"i, � and l"j,  is

P
��
"� (�

��
n
�
¹

�
!�

��
n
�
¹

�
) , (40)

where ¹
�
"=M

�
A

�
/n

�
is the modal energy sometimes called vibrational temperature. Many

relationships may be found in the literature for �
��
. The one adopted here is based on a wave

approach. It yields [1]

�
��
"

¸c
�

��A
�
�

�
�

�

R
����� (�) cos �d�, (41)
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where ¸ is the length of the coupling of plates i and j. This relationship shows that the
coupling loss factors verify the reciprocity relationship:

�
��
n
�
"�

��
n
�
. (42)

The SEA system is

� �
n
�
�
	

�
�	

!n
�
�
��

�

!n
�
�
��

n
�
�
	

�
�	
� �

¹
�
�

¹
�
�"�

P�
�
�
�

P�
�
�
� , (43)

where �
��
denotes the damping loss factor of the subsystem k. This system is symmetric by

virtue of the reciprocity relationship.
The next section is devoted to the comparison of some results of CeReS and SEA with

some measurements taken on two structures.

8. EXPERIMENTAL RESULTS

Two experiments have been performed on structures. Both are in the steady state
condition. The principle of these measurements is as follows. One or two shakers type
B&K4809 apply a force to the structure. The excitation signal is white noise con"ned into
the frequency band of interest. In the case of several shakers, their respective signals are
uncorrelated. An impedance head type B&K8001 is located between the shaker and the
structure. It allows the r.m.s.-cross-spectrum force}acceleration S

��
(�) for each driving

point to be measured. All transducer signals are acquired with an FFT-analyzer type
HP3665. The power being injected in #exural waves into a wideband was determined with
a frequency integration of the cross-spectrum ��

�
"R���

��
S
��
(�)/(i�) d�. No power is

supplied to the other kinds of waves and thus, ���"0 for �"l, t. For a third-octave band,
�

�
"�

�
/2�
� and �

�
"�

�
2�
� where �

�
is the centred frequency. The power spectral

density S
��
(�) of velocity is measured at several points with an accelerometer type

B&K4393V connected to an integrator ampli"er type B&K2635. The energy contained in
the frequency band is determined from the power spectral density assuming that it is twice
the kinetic energy. Thus,=

	���
(�

�
)"����

��
S
��
(�) d� where � is the mass per unit area of the

plate. This measurement will be compared with the energy=
�����

provided by CeReS and
the mean energy=M

���
of statistical energy analysis.

The "rst experiment deals with a U-shaped aluminium plate with two slits. Figure 6(a)
shows the experimental set-up and Figure 6(b) shows the geometry of the U-plate. The
thickness is 1)5 mm and the plate is covered with a damping material in order to avoid
a di!use "eld. It is assumed that the presence of the damping material a!ects the damping
loss factor and the surface mass density but not the bending rigidity of the aluminium plate.
The surface mass density of the plate is �"5)2 kg/m�. The damping loss factor is �"15%
over all octave bands of interest and was measured on a piece of square plate (with the same
damping material) excited by a shaker with a known injected power. The U-plate is excited
by two shakers whose locations are shown in Figure 6(b). The structure is tested over four
octave bands from 400 to 6400 Hz. The values of injected powers, modal overlap and
wavelength are summarized in Table 2. The power spectral density S

��
(�) of velocity is

measured at 22 points on a single line from top to bottom (see the measurement line in
Figure 6(b)). The CeReS model accounts for #exural waves only. Other kinds of waves



Figure 6. Experiment on a U-shaped plate. (a) View of the experimental set-up. (b) Geometry of the U-plate and
position of the two shakers, the two slits and the measurement line (points 1}22).
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cannot be created since the structure is #at. The boundary of the plate is divided into 70
elements. The CeReS model thus contains 70 degrees of freedom. The values of injected
powers of Table 2 and the damping loss factor are put in data "les of CeReS. The CPU-time
is 24 s for 12 frequencies on a HP computer with a HPPA8500 processor. SEA calculation is
trivial in this case since there is a unique subsystem. The mean energy is simply
=M

���
"(��

�
#��

�
)/A�� where A"0)801 m� is the area of the U-plate. Figures 7(a) and 7(b)

show some comparisons of the measured energy �S
��
(�) in pure tones with the predicted

values =
�����

versus frequency at points 14 and 21. The modal overlap is high. The
variations of the pure tone response are due to the modal behaviour of the structure and the
CeReS prediction should be considered as the r.m.s.-value of energy in a wideband.
However, the macroscopic evolution is well predicted. In particular, the di!erence of
vibrational energy between points 14 and 21 is 15)6 dB at 898 Hz and increases to 23)7 dB at



TABLE 2

Modal overlap, wavelength and powers being injected into the;-plate structure for
each third-octave band

Frequency Modal overlap Wavelength Power 1 Power 2
(Hz) (cm) (�W) (�W)

449 13 16 34 19
566 17 15 19 10
713 21 13 12 9)3
898 26 12 9)6 6)2
1131 33 11 6)1 2)7
1425 42 9)5 4)5 2)4
1796 53 8)4 6)2 3
2263 67 7)5 13 6)9
2851 84 6)7 23 8)6
3592 106 6)0 0)8 0)4
4525 133 5)3 0)1 0)07
5702 168 4)7 0)05 0)02

Figure 7. U-shaped plate. Comparison of measured energy in pure tone (**) and predicted r.m.s.-values
(** line) by the software CeRes versus frequency at (a) point 14, (b) point 21. Comparison of measured mean
values of the energy density (**); SEA values (- - - -) and predicted values by the software CeReS (**) for the
third-octave bands centred at (c) 1796 and (d) 4525 Hz.
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3592 Hz. These points are mainly a!ected by the second shaker. Point 14 is at a distance
r
�
"18 cm of this shaker whereas point 21 is at r

�
"72 cm. On the other hand, the

attenuation factor m"��/c ism
�
"3)9 m�� at 898 Hz andm

�
"7)9 m�� at 3592 Hz. If we



Figure 8. Experiment on a seven-plate structure. (a) View of the experimental set-up. (b) Geometry of the
structure and position of the shaker and measurement points A}C and the measurement line (points 1}23).
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consider that both points are in the direct "eld e�	�/2�r of the second source, the di!erence
of level may be evaluated with 10m(r

�
!r

�
) log

��
(e)#10 log

��
(r
�
/r

�
) that is 15 dB at

898 Hz and 24.5 dB at 3592 Hz. The increase of the di!erence can be explained with the
increase of the attenuation. Figures 7(c) and 7(d) show some comparisons of the measured
energy =

	���
in third-octave band and the predictions =

�����
and =M

���
along the

measurement line (points 1}22). The two main peaks result from the proximity of the point
source while the secondary peak predicted by CeReS (points 9, 10) stems from the fact that
the measurement line re-enters into the direct "eld of shaker 1. Unfortunately, this e!ect is
lower than the e!ect of some dominant modes and cannot be observed. The mean energy
=M

���
seems to be overestimated. In fact, the mean level along the measurement line is not

the mean level over the plate and there is a di!erence of 3)5 dB at 1796 Hz and 0)2 dB at
4525 Hz. The mean level =M

���
is correct compared with the mean level of the plate. This

simply means that the damping loss factor has been correctly estimated.
The second experiment is concerned with a more complex structure. Figure 8(a) shows

the experimental set-up and Figure 8(b) the geometry of this structure. It is made of seven
plates of steel. The thickness is 0)8mm and the structure is entirely covered with a damping
material named CATANE AL with thickness 1)24mm and density 1)26 g/cm�. An
equivalent surface mass density is used, assuming again that the presence of the damping
material does not a!ect the rigidity of steel plates. The surface mass density is
�"7)8kg/m�and the loss factor is �"2%. The same technique of measurement was



TABLE 3

Modal overlap, wavelength and power being injected into the seven-plate
structure for each third-octave band

Frequency Modal overlap Wavelength Power
(Hz) (cm) (�W)

449 1)3 12)5 8)5
566 1)6 11)2 3)5
713 2)0 10 4)0
898 2)5 9 1)5
1131 3)2 7)9 1)3
1425 4)0 7 0)7
1796 5)0 6)3 0)9
2263 6)4 5)6 0)4
2851 8)0 5 0)8
3592 10)1 4)4 1)4
4525 12)7 4 2)3
5702 16)0 3)5 1)0
7184 20)2 3)1 1)1

Figure 9. Seven-plate structure. Comparison of measured energy in pure tone (**) and predicted r.m.s.-values
(**) by the software CeReS versus frequency at (a) point A, (b) point B, (c) point C. (d) Comparison of
measured mean values over the third-octave band centred at 7155 Hz of energy (**); SEA values (- - - -) and
CeReS values (**) versus position (points 1}23).
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involved. The frequency bands of interest cover from 400 to 12 800Hz. However,
measurement was poor in the last two third-octave bands and thus results are presented
from 400 to 8000 Hz. The CeReS model of this structure takes into account three kinds of
waves, and the structure was discretized with 200 boundary elements. Thus, the CeReS
model contains 600 degrees of freedom. Values of injected power, wavelength and modal
overlap are summarized in Table 3. The required CPU-time for this model is 3347 s for 15
frequencies on the same computer. If in-plane waves are neglected, the model reduces to 200
degrees of freedom and CPU-time becomes 318 s. No signi"cant di!erence has been
observed in results. Figures 9(a}c) show some comparisons of measured energy �S

��
(�) in

pure tones with the predicted value=
�����

versus frequency at points A, B and C (see Figure
8(b)). The modal overlap is lower than for U-plate. Figure 9(d) shows a comparison of the
measured energy=

	���
in the frequency band 6400}8000 Hz, the prediction=

�����
of the

software CeReS and the mean energy =M
���

along the measurement line drawn in Figure
8(b). Within the central plate (points 7}18), the total energy is well predicted by both CeReS
and SEAmodels. In the neighbourhood of the driving point (points 7}12), CeReS prediction
shows a sharp peak because the direct "eld is singular, like 1/rwhere r is the source}receiver
distance. Indeed, this singularity has no physical meaning and the measurement clearly
shows that this model is not correct in the near "eld; say, within one wavelength. However,
the prediction is correct for points 13}18 where the decrease is well predicted. The decrease
of energy inside other plates is more di$cult to observe. These lateral plates are smaller
than the central one and the decrease is lower. However, the step of energy from the central
plate to lateral ones is well predicted. It seems that SEA slightly underestimates the energy
in the "rst plate (points 1}6) but measurements in other frequencies do not con"rm it. The
last plate (points 19}23) is clearly too narrow and it is di$cult to draw any conclusions. The
width is 4 cm and the wavelength 3 cm at 7100 Hz. The high-frequency assumption does not
apply and it should be better to consider it as a beam.

9. CONCLUSION

In this paper, equations for the vibrational energy transfer in structures have been
derived. These equations have been obtained under the high-frequency assumption that at
least several wavelengths lie in the propagation domain and, when time-variation is
accounted for, the period of the underlying wave-packets is small compared with the
characteristic time of the overall phenomenon.
It has been found that this model is analogous to the problem of radiative heat transfer.

Although some di!erences exist between heat and mechanical transfer, it may be possible to
use thermal software in vibroacoustics. In the past, an attempt to re-use thermal softwares
in dynamics has beenmade [3], which was based on an analogy with a conduction problem.
Radiative transfer di!ers from the conduction and so, although the vibrational conductivity
approach and the present approach are both based on a thermal analogy, they are not
equivalent.
The software program CeReS is especially designed for solving the integral equations

presented in this paper. The numerical scheme chosen is quite classical, although any other
scheme would be suitable. An important fact is that the kernel of this integral equation is
regular. This greatly simpli"es the choice of quadrature scheme.
Numerical results provided by CeReS, SEA and measurements achieved on two

multi-plate structures, are in good agreement. They suggest that the present method is
a natural extension of SEA since it provides the repartition of energy inside subsystems.
CeReS requires more CPU-time than SEA, but fortunately, signi"cantly less than an FEM
model for these frequencies.
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APPENDIX A: GAUSSIAN WAVE-PACKET

Let v�(x, t) �"b, l or t the disturbance in space}time for vibration in plates, be assumed to
depend on a single space variable x for the sake of simplicity. Therefore, we consider
a one-dimensional system, a beam, or alternatively a plane wave travelling in
a two-dimensional system (a plate). The spreading occurring in multi-dimensional systems
is not taken into account. A convenient choice is the transverse de#ection for v

�
and the

longitudinal and transverse potentials v
�
and v

�
for in-plane motion. Using a spatial Fourier

transform:

<� (k, t)"
1

2� �
�

��

v� (x, t) e���dx (A.1)

it is easy to see that <� (k, t)"<� (k, 0)e��� is the solution of a second order di!erential
equation with respect to time, where � is constrained to verify the dispersion relationship.

c�
(�
k�!��"0 for �"l or t,

Dk�!���"0 for �"b. (A.2)

Note that D is the bending sti!ness and � the mass per unit area. By using the inverse
Fourier transform v� (x, t) may be synthesized by the superposition plane waves travelling in
the positive x direction for instance.

v� (x, t)"�
�

��

<� (k, 0) e�������	dk. (A.3)

A Gaussian wave-packet at initial time has the shape

v� (x, 0)"Ae!x�/4
�
� e����� , (A.4)

where A is the amplitude of the disturbance, 

�
the spatial spread of the packet and k

�
the

wavenumber of the main oscillation. The high-frequency assumption then states that the
spatial spread 


�
is much greater than the wavelength 2�/k

�
. Applied to function (A.4), the

Fourier transform <� (k, 0) becomes

<� (k, 0)"
A


�
��

e!
�
�
(k!k

�
)� . (A.5)

For the next step, it is convenient to re-write the dispersion relationship (A.2) as

�"�
�
#c�� (k!k

�
)#d� (k!k

�
)�, (A.6)

where �
�
"k

�
c���

is the circular frequency corresponding to the wavenumber k
�
, c���

, c�� ,
respectively, the phase and group velocities in the same condition and d�"0 for �"l or

t and d
�
"�D/�. Now the disturbance at any time t is obtained from the Fourier integral

(A.3) where equations (A.4) and (A.6) have been substituted, with the result [21]

v�(x, t)"A


�


(t)
e!(x!c�t)�/4
(t)� ei(��

t!k
�
�), (A.7)
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where the spatial spread at time t is given by


 (t)�"!
�
�
#id�t. (A.8)

It is then clear that the initial Gaussian wave-packet remains a Gaussian wave-packet at
a later time with an increasing spatial spread and so that the high-frequency assumption
tends to be veri"ed. Furthermore, the high-frequency assumption implies that space}time
derivatives of the Gaussian shape function 


�
/
(t) e!(x!c�t)�/4
 (t)� are small compared with

similar derivatives of the oscillatory term ei(��
t!k

�
x). This results in considerable

simpli"cations when evaluating energy quantities. For instance, consider ¹ (x, t) the kinetic
energy density and < (x, t) the potential energy density for out-of-plane motion of plates.

¹(x, t)"
1

2
� �

�v
�

�t �
�
"

���
�

2
�v
�
�� , (A.9)

< (x, t)"
1

2
D �

��v
�

�x� �
�
"

Dk�
�

2
�v
�
�� , (A.10)

where the y-derivative terms in potential energy of plates has been removed. The equality

¹ (x, t)"< (x, t) (A.11)

is established and the total energy density is

= (x, t)"¹ (x, t)#< (x, t)"���
�
�v
�
��. (A.12)

Note that equation (A.11) is only valid for one wave-packet or one travelling wave. This
does not apply in the general case with more waves due to interference phenomena.
However, it is surprising that it is still valid in the far "eld for two travelling waves in a beam
although this is of no importance for the purpose of this paper. Further, consider the energy
#ow

I (x, t)"D�
��v

�
�x�

��v*
�

�x�t
!

��v
�

�x�

�v*
�

�t �"2Dk�
�
�

�
�v
�
��. (A.13)

The proportionality constant between I (x, t) and = (x, t) is

2Dk�
�
�

�
/���

�
"2

D

���
�

�
�
k�
�
"2

1

k�
�

�
�
k�
�
"2

�
�

k
�

"c
�

(A.14)

and the equality

I (x, t)"c
�
= (x, t) (A.15)

is thus demonstrated. Equalities (A.11) and (A.15) remain valid for in-plane motions.

APPENDIX B: POWER BALANCE FOR DIRECT FIELDS

This appendix is intended to verify equality (5) where functions G� and H� are de"ned in
equations (6}9). Since the subscript � does not matter in this proof, it is temporarily
removed. For the sake of clarity, the source point S and the initial time � are removed from
the parentheses and G (S, �;M, t) and G (S,M) are rather denoted as G

��� (M, t) and G
�
(M).
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Indeed,G
��� and HS��

must be considered as generalized functions and the "rst step is to seek
a mathematical sense for these symbols.
The function G

�
of variableM is locally integrable (3¸�

���
(�
) where n"1, 2 or 3) so that

G
��� is the product of a Dirac function and that function. Consider a test function

�3C�
�
(�
��) whose support is compact, the formal calculation

�G
���,��"��
��

�� (t)G�
(M)� (M, t) dMdt"��


G
�
(M)� (M,��) dM, (B.1)

where ��"�#SM/c suggests that a correct de"nition for the generalized function
G

��� should be the right-hand side of equation (B.1). The inequality
��G

���,���)���
�

�
�
G

�
(M) dM where � (M, t)"0 whenever M 	K is compact, shows that

the last integral of equation (B.1) makes sense and that the linear map �C�G
���,�� is

continuous for the usual topology of C�
�
(�
��) and has order 0. It is therefore

a distribution. HS��
is de"ned in the same manner.

The purpose here is to evaluate the distribution R
���"� ) H

���#mcG
���#(�/�t) G

��� . To
this end, consider a test function � whose compact support does not contain (S, �).

�R
���,��"��


!HS (M) ) (��) (M,��)#mcG
�
(M)� (M,��)!G

�
(M)

��

�t
(M,��) dM. (B.2)

Since � (M, t)"0 for SM(� and �t!��(c� where � is su$ciently small, the latter integral
may be evaluated over SM*�. The relationship

(��) (M, ��)"� [� (M, ��)]!
1

c

��

�t
(M, ��) uSM (B.3)

yields

�RS��
,��"�SM*�

!HS (M) ) � [� (M,��)]#mcG
�
(M)� (M, ��) dM

"�SM*�
[� ) HS (M)#mcG

�
(M)]� (M, ��) dM

"0, (B.4)

where the second integral has been obtained by integration by parts and the last equality
results from the function equality � ) HS#mcG

�
"0 on �
!�S� which may be veri"ed by

a direct calculation. The support of the distributionR
��� is �(S, �)� and R

��� is therefore a sum
of derivatives of �

�� � up to the order of R
�� � that is one.

Consider a test function � (r, t) depending on the distance r"SM. Adopting polar
co-ordinates for such a function

�R
���,��"	

� �
�

�
�!H (r)

��

�r
(r, ��)#mcG (r)� (r, ��)!G (r)

��

�t
(r, ��) r
��� dr

"�
�

�
�!e�	�

�
�r

[� (r,��)]#me�	�� (r, ��)�dr
"[!e�	�� (r, ��)]���

���

"� (0, �) (B.5)
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and it is concluded that

R
���"� ) H

���#mcG
���#

�
�t

G
���"�

��� . (B.6)

APPENDIX C: REFLECTION EFFICIENCIES

This appendix is intended to derive the relationships for the re#ection e$ciencies R�� (��)
de"ned in equation (20). These e$ciencies just depend on the incident angle �� . The
knowledge of these re#ection e$ciencies is necessary for a practical solution of the integral
equation (23). So we are interested in the conversion mode phenomenon that occurs when
a wave of type "b, l or t impinges on a free, clamped or simply supported edge of a Love
plate.
When a wave-packet impinges on a boundary, the interaction process duration is much

greater than the period of the main oscillation. It has also been assumed that the
time-variation of the shape function is much slower than the one of the main oscillation.
This means that the behaviour of wave-packets and travelling waves are quite similar
during the interaction process. In addition, when the boundary is locally #at, the locality
principle allows us to substitute an in"nitely extended straight boundary for the actual
boundary. Note that only polygonal boundaries are included in the software CeReS. That
leads us to study the canonical problem of an incident travelling plane wave propagating
towards a straight edge of a semi-in"nite plate. This problem has been noted in literature
(see for instance, reference [22]) and we shall con"ne the present discussion to the energetic
aspect. It should be added that more complicated canonical problems with curved edges or
curved wavefronts are solved in reference [23] in electromagnetics. Other related references
are also included.
First, when an incident #exural wave responsible for out-of-plane motion v is considered

two waves are re#ected. The "rst is a #exural travelling wave whereas the second is an
evanescent wave. It has been noted that no energy #ow is associated to any evanescent
wave. The re#ected #ux is thus totally carried by the re#ected travelling wave. In addition,
free, clamped and simply supported edges are all non-absorbing boundaries. It results in

R
�� (��)"0, �"l, t, R

��
(��)"1. (C.1)

Applying the reciprocity condition

R�� (��)"0, �"l, t. (C.2)

Second, when the incident wave type is "l or t the in-plane motion is re#ected into two
waves of type �"l and t (see Figure C.1). No out-of-plane motion is created. Then if � and
� are the potentials associated to the longitudinal and the transverse waves, the sums of
incident and re#ected waves are written as

� (x, y)"���e����������������	#a��e����������������	,

� (x, y)"���e����������������	#a��te�������� ��������	 . (C.3)

The "rst terms on the right-hand side are for incident waves, ���"1 and ���"0 for an
incident longitudinal wave and ���"0 and ���"1 for an incident transverse wave. The
re#ected plane waves (second terms on the right-hand side) are obtained by reversing the



Figure C1. Two waves of types "l and t are re#ected when a longitudinal wave impinges on a free edge.
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sign of k���. Note that

k���"
�
c
(�

cos �� , k���"
�
c
(�

sin �� (C.4)

are the wavenumber components and c��
the phase velocities. The angles �

�
and �

�
are

related by the Snell law sin �
�
/c�

�
"sin �

�
/c�

�
Transverse waves always propagate more

slowly than longitudinal waves and so the Snell law shows that in the case of an incident
transverse wave the angle �

�
is de"ned when �

�
)arcsin c�

�
/c�

�
. For greater values of �

�
the

re#ected longitudinal wave is evanescent. The case of an incident longitudinal wave does
not reveal any such problem. The x-displacement denoted u and the y-displacement
denoted v are related to the potentials with the relationships

u"

��
�x

#

��
�y

, v"
��
�y

!

��
�x

. (C.5, C.6)

Finally, considering a section normal to the x direction, the normal stress N and the
transverse stress ¹ are given by

N"D
��

���
�x�

#�
���
�y�

#(1!�)
���
�x�y� , (C.7)

¹"D
��

���
�y�

!

���
�x�

#2
���

�x�y� , (C.8)

where D
�
and D

�
are the longitudinal and transverse rigidity. Now, applying the relevant

boundary conditions at the edge x"0, the coe$cients a�� of the re#ected waves may be
calculated. For instance, a free edge imposes that N"0 and ¹"0 and so

�
k�
���

#�k�
���
(�!1)k

���
k
���

!2k
���
k
���

k�
���

!k�
���

� �
a��
a���

"�
!k�

���
!�k�

���
(�!1)k

���
k
���

!2k
���
k
���

!k�
���

#k�
���

� �
���
����

. (C.9)

A similar system is obtained for clamped edge (u"v"0). Magnitudes of re#ected waves
are determined by solving this linear system. The incident #ux for in-plane motion is
calculated from

P
�
�

"D�[(k����#k���� ) Im(k���)] (C.10)
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and a similar relationship applies for the re#ected #ux of kind �.

P
���

"D�[(k����#k���� ) Im(k��� )] �a�� �� . (C.11)

The re#ection e$ciencies are "nally obtained by taking the ratio of re#ected #ux over
incident #ux.

R�� (��)"
D�[(k����#k����) Im(k���)] �a�� ��
D�[(k����#k���� ) Im (k���)]

. (C.12)
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